

The Stereodirecting Effect of the Glycosyl C5-Carboxylate Ester: Stereoselective Synthesis of β -Mannuronic Acid Alginates

Jeroen D. C. Codée,* Leendert J. van den Bos, Ana-Rae de Jong, Jasper Dinkelaar, Gerrit Lodder, Herman S. Overkleeft, and Gijsbert A van der Marel*

Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

jcodee@chem.leidenuniv.nl; marel_g@chem.leidenuniv.nl

Received September 12, 2008

Glycosylations of mannuronate ester donors proceed highly selectively to produce the 1,2-*cis*-linked products. We here forward a mechanistic rationale for this counterintuitive selectivity, based on the remote stereodirecting effect of the C5-carboxylate ester, which has been demonstrated using pyranosyl uronate ester devoid of ring substituents other than the C5- carboxylate ester. It is postulated that the C5-carboxylate ester prefers to occupy an axial position in the oxacarbenium intermediate, thereby favoring the formation of the ³H₄ half-chair over the ⁴H₃ conformer. Nucleophilic attack on the ³H₄ half-chair intermediate occurs in a β -fashion, providing the 1,2-*cis*-mannuronates with excellent stereoselectivity. The potential of the mannuronate ester donors in the formation of the β -mannosidic linkage has been capitalized upon in the construction of a mannuronic acid alginate pentamer using a convergent orthogonal glycosylation strategy.

Introduction

The stereoselective introduction of glycosidic bonds is the most important transformation in glycochemistry. In spite of enormous efforts, a general procedure for the stereoselective formation of 1,2-*cis* linkages is not available, and their introduction often requires special glycosylation strategies and careful tuning of the reaction parameters.^{1,2} Among the several types of 1,2-*cis* linkages, the construction of the β -mannosidic linkage is considered to be one of the greatest challenges³ since its formation is disfavored on both steric (repulsion by the axial C2-substituent) and electronic (lack of the anomeric effect, destabilization by the Δ -2 effect) grounds. A breakthrough in the formation of β -mannosides was reported by Crich and coworkers, who showed that 4,6-*O*-benzylidene-protected mannosyl sulfoxide and thiomannoside donors preferentially form 1,2-*cis* products in glycosidations.⁴ This remarkable stereo-

38 J. Org. Chem. **2009**, 74, 38–47

chemistry is explained by the intermediacy of relatively stable anomeric α -triflates, which are substituted in a S_N2-like manner to provide the β -mannosides. Collapse of the anomeric triflate into the mannosyl oxacarbenium ion, which is presumed to give α -selective condensations, is thought to be disfavored because of the electronically and conformationally disarming effect of the 4,6-O-benzylidene group in combination with unfavorable torsional interactions of the C2 and C3 substituents in going from the α -triflate to the oxacarbenium ion.^{5,6} On the basis of these results, we reasoned that electron-withdrawing substituents in the mannose core also guide the corresponding mannosylations to give the 1,2-cis product. Indeed, we recently showed that glycosylations with disarmed 1-thio-2-azidomannosides⁷ and, in particular, 1-thiomannuronate ester donors⁸ led to the predominant formation of the 1,2-cis products. We here report that the β -selectivity of the mannuronate esters results from the stereodirecting effect of the C5-carboxylate ester and postulate that the observed stereocontrol originates from the oxacarbenium

 ⁽a) Comprehensive Glycoscience; Kamerling, J. P., Ed.; Elsevier: Oxford, 2007; Vol. 1. (b) The Organic Chemistry of Sugars; Levy, D. E., Fügedi, P., Eds.; CRC Press, Boca Raton, FL, 2006. (c) Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 2004, 59, 69. (d) Codée, J. D. C.; Litjens, R. E. J. N.; van den Bos, J. L.; Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34, 769. (2) Demchenko, A. V. Synlett 2003, 1225.

⁽²⁾ Demenence, A. V. Synen 2005, 1222. (3) Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin Trans. 1 2000,

⁽³⁾ Gridney, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin Trans. 1 2000 1471.

^{(4) (}a) Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506. (b) Crich, D.; Sun,
S. J. Org. Chem. 1997, 62, 1198. (c) Crich, D.; Sun, S. Tetrahedron 1998, 54,
8321. (d) Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435. (e) Crich, D.
J. Carb. Chem. 2002, 21, 667.

^{(5) (}a) Crich, D.; Vinogradova, O. J. Org. Chem. **2006**, 71, 8473–8480. (b) Crich, D.; Li, L. J. Org. Chem. **2007**, 72, 1681.

⁽⁶⁾ Crich, D.; Chandrasekera, N. S. Angew. Chem., Int. Ed. 2004, 116, 5500.
(7) van den Bos, L. J.; Duivenvoorden, B. A.; De Koning, M. C.; Filippov, D. V.; Overkleeft, H. S.; van der Marel, G. A. Eur. J. Org. Chem. 2007, 116.

D. V.; Overkleett, H. S.; van der Marel, G. A. *Eur. J. Org. Chem.* 2007, 116. (8) (a) van den Bos, L. J.; Dinkelaar, J.; Overkleeft, H. S.; van der Marel, G. A. *J. Am. Chem. Soc.* 2006, *128*, 13066. (b) van den Bos, L. J.; Codée, J. D. C.; Litjens, R. E. J. N.; Dinkelaar, J.; Overkleeft, H. S.; van der Marel, G. A. *Eur. J. Org. Chem.* 2007, 3963.

SCHEME 1. Intermediates in the Condensation of Mannuronate Ester 1

ion intermediate. Furthermore, we demonstrate that this reliable stereocontrol can be capitalized upon in the construction of higher mannuronic acid alginate oligomers using a block coupling glycosylation strategy.^{1d}

Results and Discussion

To rationalize the β -selectivities observed in the glycosidations of α -(S)-phenyl mannuronate ester 1, we initially reasoned that the equilibrium between the covalent triflate (or the corresponding tight ion pair) $\mathbf{3}$ and the solvent separated ion pair 4 is shifted toward the covalent triflate because of the strong electron-withdrawing capacity of the C5-carboxylate ester (Scheme 1). To substantiate this hypothesis, we tried to detect the transient intermediate 3 by low-temperature NMR experiments.^{4,9} When 1-thiomannuronate ester 1 was treated with diphenylsulfoxide (Ph₂SO, 1.2 equiv) and trifluoromethanesulfonic anhydride (Tf₂O, 1.2 equiv) in CD₂Cl₂ at -50 °C, the temperature required for full activation of 1-thiouronic acids, the starting material disappeared completely. However, several species were formed that did not converge into a single product in time or upon warming. The presence of the C5-carboxylate ester function apparently does not induce the formation of a single triflate species.¹⁰

To probe whether direct S_N 2-like displacement of the activated anomeric α -thiophenyl moiety in **2** is at the basis of the observed selectivity, we examined the glycosylation properties of β -(*S*)-phenyl mannuronate ester **8**. As recorded in Table 1 (entries 1 and 2), this thioglycoside performed identical to α -mannoside **1** in the glycosidation with glucoside **6**, disproving the latter line of thought. Furthermore, the carboxylbenzyl¹¹ donor **10** and the *N*-phenyl trifluoroacetimidate **13**^{12,13} proved equally capable to stereoselectively form the β -mannosidic bond (Table 1, entries 3 and 4), indicating that the stereoselectivity in these mannosylations is independent of the type of donor used and does not rely on the preactivation protocol.

Given the fact that no single anomeric triflate of the mannuronate ester was detected by NMR and that the confor-

JOCFeatured Article

mational flexibility of these donors readily allows flattening of the pyranose ring,¹⁴ we reasoned that the putative α -anomeric triflates are not the (sole) intermediate responsible for the observed β -selectivity in the glycosidations of mannuronate esters and that the β -selectivity can also arise from the oxacarbenium intermediate 4. It is well-established that the nature and orientation of the substituents on the pyranose core have a profound influence on the stability and reactivity of the oxacarbenium ion.^{15,16} The effect of both alkyl and heteroatom substituents at C2, C3, and C4 on the stability of pyranosyl cations has been investigated in detail using both experimental¹⁵ and computational techniques.¹⁷ In the most favorable half-chair conformations,¹⁸ alkyl groups prefer to adopt equatorial positions for steric reasons, whereas electron-withdrawing substituents at C3 and C4 preferentially take up axial positions to allow through-space stabilization of the anomeric cation. Hyperconjugative effects are at the basis for the preference of C2-alkoxy groups to assume an equatorial position. For C5, only the effect of alkyl substituents¹⁹ has been examined and little is known about the stereodirecting effects of electron-withdrawing (or donating) groups at this position.

To establish the stereodirecting effect of the C5-carboxylate ester, we "isolated" this substituent and investigated the stereochemical preferences of the stripped pyranosyl uronate ester 16 (Scheme 2 and Table 2). A range of alcohols of increasing size was condensed with 16 and with its "non-oxidized" counterpart 17, using our standard glycosylation conditions (Scheme 2).²⁰ The stereodirecting effect of the C5-carboxylate ester is immediately clear from Table 2: uronate ester 16 reacts in a highly 1,5-cis-selective fashion when compared to its benzyloxymethyl counterpart 17. This holds true for all examined nucleophiles. Although the selectivity depends on the steric demands of the nucleophile, the C5 carboxyl ester in 16 is highly 1,5-cis-directing. The β -linked products are preferentially formed with both primary and secondary alcohols, and also tert-butanol reacts in a 1,5-cis-selective fashion. Only with the bulky 1-adamantanol no selectivity is found.²¹ In the C5 benzyloxymethylene series (17), the same trend is observed: increased steric bulk of the nucleophile leads to a stronger trans preference.¹⁵ The stereochemical outcome of these condensations can be explained with the two diasteromeric half-chair oxacarbenium

(19) Roush, W. R.; Sebesta, D. P.; James, R. A. Tetrahedron 1997, 53, 8837–8852.

^{(9) (}a) Crich, D.; Sun, S. J. Am. Chem. Soc. **1997**, 119, 11217. (b) Nokami, T.; Shibuya, A.; Tsuyama, H.; Suga, S.; Bowers, A. A.; Crich, D.; Yoshida, J. J. Am. Chem. Soc. **2007**, 129, 10922.

⁽¹⁰⁾ Although no single α -anomeric triflate was observed, it cannot be excluded that the reaction proceeds via such an intermediate and/or an exploded S_N2-like transition state. See ref 6.

 ^{(11) (}a) Kim, K. S.; Kim, J. H.; Lee, Y. J.; Lee, Y. J.; Park, J. J. Am. Chem.
 Soc. 2001, 123, 8477. (b) Codée, J. D. C.; Kröck, L.; Castagner, B.; Seeberger,
 P. H. Chem.-Eur. J. 2008, 14, 3987.

⁽¹²⁾ Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405.

⁽¹³⁾ The corresponding α/β -anomeric acetate and α -trichloroacetimidate were also assessed in the coupling with allyITMS. The former donor proved completely unreactive toward the activation with BF₃•OEt₂ and was recovered after the reaction. The latter donor stereoselectively provided mannuronate **15**, but showed substantial self-condensation, leading to the formation of the anomeric trichloroacetamide.

⁽¹⁴⁾ Even in the condensation of the rigid 4,6-O-benzylidene mannosides, in which α -anomeric triflates have convincingly been demonstrated to be intermediates, substantial oxacarbenium ion character developed in the transition state, leading to the coupled products. See ref 6.

^{(15) (}a) Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel,
K. A. J. Am. Chem. Soc. 2003, 125, 1552. (b) Chamberland, S.; Ziller, J. W.;
Woerpel, K. A. J. Am. Chem. Soc. 2005, 127, 5322. (c) Lucero, C. G.; Woerpel,
K. A. J. Org. Chem. 2006, 71, 2641.

 ^{(16) (}a) Jensen, H. H.; Bols, M. Acc 2006, 39, 259, and references therein. (b)
 Boutureira, O.; Rodríguez, M. A.; Benito, D.; Matheu, M. I.; Díaz, Y.; Castillón,
 S. Eur. J. Org. Chem. 2007, 3564.

^{(17) (}a) Woods, R. J.; Andrews, C. W.; Bowen, J. P. J. Am. Chem. Soc.
1992, 114, 859. (b) Miljković, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L. J. Org. Chem. 1997, 62, 7597. (c) Nukada, T.; Bérces, A.; Wang, L.; Zgierski, M. Z.; Whitfield, D. M. Carbohydr. Res. 2005, 340, 841.

⁽¹⁸⁾ Although the developing double bond character between O5 and C1 can also be accommodated in the pyranose ring by adopting a $^{2.5}$ B or B_{2.5} boat conformation, these conformers will be substantially higher in energy: Shinskina, S. V.; Shishkin, O. V.; Leszczynski, J. *Chem. Phys. Lett.* **2002**, *354*, 428. Also see refs 15 and 22.

^{(20) (}a) Codée, J. D. C.; van den Bos, L. J.; Litjens, R. E. J. N.; Overkleeft, H. S.; van Boom, J. H.; van der Marel, G. A. *Org. Lett.* **2003**, *5*, 1947. (b) Van den Bos, L. J.; Litjens, R. E. J. N.; van den Berg, R. J. B. H. N.; Overkleeft, H. A.; van der Marel, G. A. *Org. Lett.* **2005**, *7*, 2007.

⁽²¹⁾ In contrast, 1-adamantanol very reliably provides the β -linked products when used as an acceptor in the benzylidene mannose system, featuring anomeric triflates. See for example ref 4.

^{*a*} Isolated yields. ^{*b*} TTBP = tri-*tert*-butylpyrimidine. ^{*c*} The α -anomer could not be detected by TLC analysis and isolated by column chromatography. ^{*d*} The stereochemistry of the newly formed glycosidic bond was deduced from the value of the ¹J_{C-H} coupling of H-1' and C-1'. ^{*e*} CB = carboxylbenzyl. ^{*f*} DTBMP = 2,6-di-*tert*-butyl-4-methyl pyridine. ^{*g*} The stereochemistry of the anomeric center was established using NOESY experiments.

16-I R = CO₂Me 17-I R = CH₂OBn Nu ${}^{3}H_{4}$ Ph₂SO, Tf₂O TTBP, DCM Nucleophile 16 18a-d -78°C, 5 min -78°C, 15 min. SPh Nu BnO BnO Æ 17 19a-d Nu 16-*II* R = CO₂Me 17-II R = CH₂OBn

ions 16-I/17-I and 16-II/17-II as product-forming intermediates. An incoming nucleophile will attack these cations with a facial selectivity to form the lower-energy chair product as opposed to the twist-boat adduct.²² If no destabilizing interactions develop in the transition state, oxacarbenium ions 16-I/17-I will provide the 1,5-cis products, where ions 16-II/17-II lead to the corresponding trans products. The formation of the 1,5-cis products 18a-c arises from the ${}^{3}H_{4}$ oxacarbenium ion 16-*I*, in which the carboxylate ester occupies an axial position. The diminished β -selectivity of the bulky alcohols results from destabilizing interactions between the axially oriented carboxylate and the incoming acceptor, making attack on the ${}^{3}\text{H}_{4}$ oxacarbenium ion 16-I (and 17-I) less favorable for sterically demanding nucleophiles.²³ The C5-carboxylate ester thus preferentially occupies a pseudo axial position in the half-chair oxacarbenium ion intermediate. As such, the positively charged

TABLE 2.	Condensations	of	16	and	17
----------	---------------	----	----	-----	----

entry	nucleophile	product, c	product, $\alpha:\beta^b$ (yield) ^c			
1	ОН	18a , 1 : 7.7 (67%)	19a , 1 : 1.4 (82%)			
2)—он	18b , 1 : 3.8 (48%)	19b , 1 : 0.60 (61%)			
3	он	18c , 1 : 2.9 (52%)	19c , 1 : 0.38 (60%)			
4	OH	18d , 1 : 1.2 (52%)	19d , 1 : 0.33 (74%)			

^{*a*} Condensations were performed as described in Scheme 2. ^{*b*} Determined by NMR spectroscopy of the isolated compounds. ^{*c*} Isolated yields.

^{(22) (}a) Stevens, R. V. Acc. Chem. Res. 1984, 17, 289. (b) Deslongschamps,
P. Stereoelectronic Effects in Organic Chemistry; Pergamon: New York, 1983.
(23) Seeman, J. I. Chem. Rev. 1983, 83, 83.

FIGURE 1. Mannuronate ester oxacarbenium ion conformers.

oxacarbenium ion can be stabilized by the through-space interaction with the electron-rich carbonyl function.²⁴ In addition, the electron-withdrawing effect of the carboxylate ester is minimized in this constellation.²⁵

When we now reconsider the mannuronate ester oxacarbenium ions 4-I and 4-II, it is clear that all substituents occupy a preferred position in the ${}^{3}\text{H}_{4}$ conformer **4-***I* (Figure 1).²⁶ The ⁴H₃ conformer on the other hand has all substituents in disfavored positions, thereby destabilizing this intermediate. Although 1,3-pseudo-diaxial interactions of the substituents at C3 and C5 and the incoming nucleophile develop upon attack of the acceptor on **4-***I*, the cooperative stabilization of the ring substituents suffices to allow the stereoselective formation of the β -mannuronic acid bond. It is of interest to note that Woerpel and co-workers have previously established that the mannosyl oxacarbenium also prefers to adopt the ³H₄ conformation, having all ring substituents but the C5 group in the most favorable orientation.^{15c} A Curtin-Hammet kinetic scenario, in which product formation arises from the higher ground state ⁴H₃ conformer, has been proposed to account for the α -selectivity generally observed in mannosylations. The additional stabilization of the C5-carboxylate ester in oxacarbenium ion 4-I prevents such a Curtin-Hammet reaction scheme to occur.

Next, we turned to the assembly of 1,4-linked β -D-mannuronic alginate oligomers. Alginates are linear, anionic polysaccharides composed of 1,4-linked β -D-mannuronic and α -L-guluronic acids.²⁷ Small oligomers of these polymers have been shown to have immunomodulating activity by binding to Toll-like receptors (TLRs) 2 and 4.²⁸ With the dual goal to establish an efficient synthetic route toward these oligomers^{8,26} and to explore how the stereochemistry of the mannosylations develops when larger coupling partners are involved,²⁹ we envisaged a convergent assembly route using both monomer (**8** and **20**) and dimer building blocks (**12** and **21**) as depicted in Scheme 3. The levulinoyl group was selected to temporarily mask the C4 hydroxyl of the oliogomannuronates to be elongated.

To maximize efficiency, we explored the possibility to construct the thiophenyl mannuronic acid dimer building blocks 12 and 21 from thiomannosyl acceptor 11 and thiomannoside

JOC Featured Article

donors 8 and 21, respectively.³⁰ Preactivation of the donors 20 and 8 was effected using the Ph₂SO/Tf₂O reagent combination and ensuing addition of alcohol 11 led to the formation of the (S)-phenyl dimers. Unfortunately, several side products were formed during these reactions, presumably due to activation of the thiomannosyl acceptor and/or the dimer products. Addition of triethylphosphite to scavenge any thiophilic side products of the activator system did not lead to cleaner reactions, and the desired products could only be obtained in moderate yield.^{30,31} We therefore switched to an orthogonal glycosylation approach and transformed (S)-phenyl mannosides 8 and 20 into carboxylbenzyl (CB) donors 10 and 22, respectively.¹¹ Activation of these CB mannuronate esters in the presence of acceptor 11 was achieved using Tf₂O and di-tert-butyl methyl pyridine (DTBMP), and the desired dimers 12 and 21 were both obtained in 65% yield, with excellent β -selectivity.

With the monomers (8 and 20) and dimer building blocks (12 and 21) in hand, we set out to assemble the target oligomers. First, monomeric donor 8 was condensed with azidopropanol at -78 °C to provide the terminal mannuronate ester 23, carrying an azidopropanol spacer in 76% yield. Hydrazine treatment of 23 liberated the C4-OH, to give the reducing end mannuronate ester 24 in near quantitative yield. Acceptor 24 was then mannosylated with 20 and 8 using our standard Ph₂SO/Tf₂O activation protocol to give the dimers 25 and 26, in somewhat reduced yields (52 and 46%, respectively). When dimeric donors 21 and 12 were employed in the condensation with 25, a further drop in yield was observed: trimers 28 and 29 were isolated in 29 and 28%, respectively. In all these condensations, TLC analysis showed complete consumption of the thio donors $\mathbf{8}$, 20, 12, and 21 in the preactivation step, but incomplete conversion into the coupled products. In our previous studies toward the synthesis of heparin oligosaccharides, we observed a similar behavior of (S)-phenyl glucuronate ester donors.³² This setback was overcome by replacing the Ph₂SO/Tf₂O system with the closely related 1-benzenesulfinyl piperidine (BSP)/Tf₂O couple.³³ Application of the latter activator system in the present case gave a significant improvement in the outcome of the glycosylations, and now the dimers and trimers were obtained in satisfactory yields (25: 67%, 26: 62%, 28: 74%, and 29: 51%). To elongate the di- (26) and trimannoside (29), the levulinoyl groups were removed and the resulting alcohols 27 and 30 were glycosylated with dimer donor 22. Gratifyingly, both the [2 +2] and [2 + 3] coupling proceeded efficiently to provide the tetra- and pentamer mannuronate esters 31 and 32 in 67 and 69% yields, respectively. Importantly, the excellent β -selectivity was maintained in all condensations and was not affected by the size of the coupling partners, underscoring the strength of mannuronate ester donors in the construction of the β -mannosidic bond. To complete the synthesis of the set of mannuronic acid alginates, the oligomers were deprotected by saponification and ensuing hydrogenolysis (Scheme 4).

⁽²⁴⁾ Full neighboring group participation of the C5-carboxylate does not occur. See also: Schmidt, R. R.; Rücker, E. *Tetrahedron Lett.* **1980**, *21*, 1421.
(25) Jensen, H. H.; Lyngbye, L.; Bols, M. Angew. Chem., Int. Ed. **2001**, *40*, 3447.

⁽²⁶⁾ Analogously, in the ${}^{3}H_{4}$ oxacarbenium ion of L-gulose, the C5 epimer of D-mannose, all ring substituents take up their most favorable orientation, and glycosydations of L-gulose proceed with an unusual high preference for the α -anomer: Dinkelaar, J.; van den Bos, L. J.; Hogendorf, W. F. J.; Lodder, G.; Overkleeft, H. S.; Codée, J. D. C.; van der Marel, G. A. *Chem.–Eur. J.* **2008**, *14*, 9400.

⁽²⁷⁾ Moe, S. T.; Draget, K. I.; Skjåk-Bræk, G.; Smidsrød, O. Food Polysaccharides and Their Applications; Stephen, A. M., Eds.; Marcel Dekker, Inc.: New York, 1995; pp 245–286.

^{(28) (}a) Flo, T. H.; Ryan, L.; Latz, E.; Takeuchi, O.; Monks, B. G.; Lien, E. Ø.; Halaas, Ø.; Akira, S.; Skjåk-Bræk, G.; Golenbock, D. T.; Espevik, T. *J. Biol. Chem.* **2002**, *38*, 35489. (b) Iwamoto, M.; Kurachi, M.; Nakashima, T.; Kim, D.; Yamaguchi, K.; Oda, T.; Iwamoto, Y.; Muramatsu, T. *FEBS Lett.* **2005**, 579, 4423.

⁽²⁹⁾ Crich, D.; Wu, B.; Jayalath, P. J. Org. Chem. 2007, 72, 6806.

^{(30) (}a) Codée, J. D. C.; van den Bos, J. L.; Litjens, R. E. J. N.; Overkleeft, H. S.; Van Boeckel, C. A. A.; Van Boom, J. H.; van der Marel, G. A. *Tetrahedron* **2004**, *60*, 1057. (b) Crich, D.; Hongmei, L. J. Am. Chem. Soc. **2004**, *126*, 15081.

⁽³¹⁾ Sliedrecht, L. A. J. M.; van der Marel, G. A.; Van Boom, J. H. Tetrahedron Lett. 1994, 35, 4015–4018.
(22) Codéa J. D. C.; Stubba B.; Schiattaralla M.; Quarklaeft, H. S.; van

⁽³²⁾ Codée, J. D. C.; Stubba, B.; Schiattarella, M.; Overkleeft, H. S.; van Boeckel, C. A. A.; van Boom, J. H.; van der Marel, G. A. *J. Am. Chem. Soc.* **2005**, *127*, 3767.

⁽³³⁾ Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015.

Conclusion

In conclusion, the outcome of the sulfonium ion mediated condensations of pyranosyl uronate **16** indicate that the C5-carboxylate ester exerts a strong stereodirecting effect, promoting the formation of 1,5-*cis* glycosidic bonds. This remote stereodirecting effect can be rationalized with the most stable oxacarbenium ion, having an axially oriented carboxylate ester, as product forming intermediate. The stereocontrol of mannuronate esters is independent of the type of donor employed and

agrees well with this postulate.^{34,16b} In concert with the other substituents on the ring, the axial C5-carboxylate ester favors the formation of the ${}^{3}\text{H}_{4}$ half-chair over the ${}^{4}\text{H}_{3}$ conformer. Incoming nucleophiles attack the ${}^{3}\text{H}_{4}$ half-chair oxacarbenium ion in a β -fashion, leading to the formation of the counterintuitive 1,2-*cis*-mannosidic bond. The value of the stereodirecting

⁽³⁴⁾ See for some recent examples of oxacarbenium ion directed stereoselective glycosylations: Zhu, X.; Kawathar, S.; Rao, Y.; Boons, G.-J. J. Am. Chem. Soc. 2006, 128, 11948. Also see ref 16b.

SCHEME 4. Deprotection of the Mannuronic Acid Oligomers

effect of the C5-glycuronate ester has been demonstrated in the construction of a set of mannuronic acid alginate oligomers. Also when larger coupling partners are involved the mannuronate esters reliably produce the 1,2-*cis* linkage. Current research is aimed at further validation of the mechanistic rationale put forth, the identification of the intermediates observed by NMR, and the role of the counterion in the glycosylations.

Experimental Section

General Procedure for Ph₂SO/BSP-Tf₂O Mediated Glycosylations: The thiodonor, TTBP (3 equiv), and Ph₂SO (1.2 equiv) or BSP (1.2 equiv) were dissolved in DCM (0.05 M donor in DCM) and stirred over molecular sieves (3 Å) for 30 min before being cooled to -60 °C. Tf₂O (1.1 equiv) was added, and the mixture was warmed to -45 °C in 15 min, after which the solution was brought back to -60 °C, and the acceptor was added (0.1 M in DCM). The mixture was allowed to very slowly reach 0 °C (several hours), and Et₃N (5 equiv) was added. The molecular sieves were filtered off, and the mixture was washed with saturated aqueous NaHCO₃. The aqueous layer was extracted twice with DCM, and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The resulting mixture was purified by silica gel column chromatography and size exclusion chromatography to provide the target compounds.

General Procedure for Levulinoyl Cleavage: The levulinoyl ester was dissolved in pyridine/HOAc (4/1, 0.05 M), and $H_2NNH_2 \cdot H_2O$ (5 equiv) was added. The reaction was stirred for 20 min, after which a few drops of acetone were added. The mixture was diluted with EtOAc, washed with aqueous HCl (1 M), saturated aqueous NaHCO₃, dried (MgSO₄), and concentrated. Column chromatography yielded the pure alcohols.

Low-Temperature NMR Experiment: Thiomannuronic acid 1 (13 mg, 0.025 mmol) and Ph₂SO (6 mg, 1.2 equiv) were dissolved in CD₂Cl₂ (0.5 mL), and the solution was transferred to an argon-flushed NMR tube. The NMR sample was immersed in the NMR probe, which was cooled to -50 °C. After a spectrum was recorded, the sample was removed from the probe and immersed in an acetone bath (-78 °C). Tf₂O (5 μ L) was added; the NMR tube was quickly shaken to ensure complete mixing, and the tube was reimmersed in the cold NMR probe (-50 °C). The probe was maintained at this temperature for 30 min and then gradually warmed to -10 °C (steps of 10 °C).

Methyl 2,3,4-tri-O-benzyl-6-O-(methyl 2,3-di-O-benzyl-4-O-acetyl- β -D-mannopyranosyl uronate)- α -D-glucopyranoside) (7): The synthesis of the title compound has been reported previously.^{8a}

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(methyl 2,3-di-*O*-benzyl-4-O-levulinoyl- β -D-mannopyranosyluronate)- α -D-glucopyranoside (9): The title compound was synthesized from 8 (98 mg, 0.17 mmol) and 6 (118 mg, 0.26 mmol) as described by the general procedure

JOC*Featured* Article

for Ph₂SO-Tf₂O mediated glycosylations (93%): $[\alpha]_D = +10$ (c =0.019, DCM); IR (neat) v (cm⁻¹) 737, 1713, 1744; ¹H NMR (400 MHz) δ 2.53 (m, 2H, CH₂ Lev), 2.71 (t, 2H, J = 6.8 Hz, CH₂ Lev), 3.31 (s, 3H, OCH₃), 3.40 (m, 3H, H-3', H-6, H-4), 3.50 (dd, 1H, J = 3.6 Hz, J = 9.6 Hz, H-2), 3.70 (m, 4H, CO₂Me, H-5'), 3.77 (m, 2H, H-5, H-5'), 4.01 (t, 1H, J = 9.6 Hz, H-3), 4.13 (m, 2H, H-6, H-1'), 4.29 (d, 1H, J = 12.4 Hz, CHHPh), 4.49 (d, 2H, J = 11.6 Hz, 2 × CH*H*Ph), 4.57 (d, 1H, J = 3.2 Hz, H-1), 4.66 (d, 1H, J = 12 Hz, CH*H*Ph), 4.74–4.89 (m, 4H, 4 × CH*H*Ph), 4.91 (d, 1H, J = 8.0 Hz, CHHPh), 5.02 (d, 1H, J = 10.8 Hz, CHHPh), 5.51 (t, 1H, J = 9.6 Hz, H-4'), 7.17–7.39 (m, 25H, H_{arom}); ¹³C NMR (100 MHz) δ 27.8 (CH₂ Lev), 29.8 (CH₃ Lev), 37.7 (CH₂ Lev), 52.5 (CH₃ CO₂CH₃), 55.0 (OCH₃), 68.6 (C-6), 69.1 (C-4'), 69.7 (C-5), 71.6 (CH₂ Bn), 72.9 (C-2'), 73.2 (CH₂ Bn), 73.5 (C-5'), 73.5 (CH₂ Bn), 74.6 (CH₂ Bn), 75.6 (CH₂ Bn), 77.5 (C-4), 78.1 (C-3'), 79.8 (C-2), 82.1 (C-3), 97.7 (C-1), 101.5 ($J_{C-1',H-1'} =$ 156 Hz, C-1'), 127.4-128.4 (Carom), 137.7 (Cg Bn), 138.0 (Cg Bn), 138.2 (C_q Bn), 138.7 (C_q Bn), 167.8, 171.4 (C=O), 206.1 (C=O); HRMS: $[M + Na^+]$ calcd for C₅₄H₆₀O₁₄Na 955.3875, found 955.3883.

(Carboxylbenzyl 2,3-di-O-benzyl-4-O-levulinoyl-β-mannopyranosyluronic acid) methyl ester (10). Thiomannuronic acid 8 (914 mg, 1.58 mmol) and 2-hydroxymethyl benzoic acid benzyl ester (1.14 g, 4.73 mmol) were coupled as described in the general procedure for Ph₂SO-Tf₂O mediated glycosylations. The resulting (benzyl carboxylbenzyl 2,3-di-O-benzyl-4-O-levulinoyl-β-mannopyranosyluronic acid) methyl ester was purified by column chromatography (100% PE to 98/2 toluene/EtOAc) and taken up in EtOAc/MeOH (0.05 M, 1/3). NH4OAc (3 equiv) and Pd/C (catalytic amount) were added, and the mixture was degassed and purged with H_2 . The mixture was stirred overnight under a H_2 atmosphere, after which the Pd/C was filtered off and the mixture was concentrated. The product was purified by column chromatography (100% PE to 80/20/1 PE/EtOAc/AcOH) to provide the title compound (66% over 2 steps): $[\alpha]_D = -36$ (c = 0.75, CHCl₃); IR (neat) ν (cm⁻¹) 729, 1271, 1686, 1714, 1734; ¹H NMR (400 MHz) δ 2.15 (s, 3H, CH₃ Lev), 2.54 (m, 2H, CH₂ Lev), 2.71 (m, 2H, CH₂ Lev), 3.61 (m, 4H, CH₃ CO₂Me, H-3), 3.96 (s, H-2), 3.99 (d, 1H, J = 8.0 Hz, H-5), 4.47 (d, 1H, J = 12.0 Hz, CHHPh), 5.53 (d, 1H, J = 12.0 Hz, CHHPh), 4.69 (s, 1H, H-1), 4.83 (d, 1H, J = 12.4 Hz, CHHPh), 4.93 (d, 1H, J = 12.4 Hz, CHHPh), 5.06 (d, 1H, J = 13.2 Hz, CHHPh), 5.36 (d, 1H, J = 13.2 Hz, CHHPh), 5.63 (t, 1H, J = 8.4 Hz, H-4), 7.22–7.49 (m, 12H, H_{arom}), 7.66 (d, 1H, J = 7.6 Hz), 8.05 (d, 1H, J = 7.6 Hz), 9.9 (br s, 1H, CO₂H); ¹³C NMR (125 MHz) δ 27.8 (CH₂ Lev), 29.7 (CH₃ Lev), 37.7 (CH₂ Lev), 52.4 (CH₃ CO₂Me), 69.1 (C-4), 69.9 (CH₂ Bn), 71.7 (CH₂ Bn), 73.1, 73.2 (C-2 and C-5), 73.4 (CH₂ Bn), 77.3 (C-3), 100.5 $(J_{C1-H1} = 158 \text{ Hz}, \text{C-1}), 126.8 (C_q \text{ CB}), 127.1, 127.2, 127.4, 127.5,$ 127.6, 127.7, 127.9, 128.1, 128.2, 131.2, 133.1 (CH_{arom}), 137.7 (C_q Bn), 138.1 (C_q Bn), 140.4 (C_q CB), 168.0 (C=O), 171.5 (C=O), 171.7 (C=O), 206.4 (C=O, Lev); HRMS [M + Na⁺] calcd for C₃₄H₃₆O₁₁NNa 643.2155, found 643.2155.

Phenyl (methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-O-benzyl-4-O-levulinoyl- β -D-mannopyranosyl uronate)-1-thio- β -D-mannopyranosyl uronate) (12): CB-Mannoside 10 (800 mg, 1.29 mmol), thiomannoside 11 (929 mg, 1.93 mmol), and di-tertbutylmethylpiridine (DTBMP, 662 mg, 3.35 mmol) were dissolved in DCM (0.05 M, 25 mL) and stirred over molecular sieves (3 Å) for 30 min before being cooled to $-60\ ^\circ C.\ Tf_2O\ (0.24\ mmol,\ 1.43$ mmol) was added, and the mixture was allowed to very slowly reach 0 °C (several hours). Et₃N (5 equiv) was added; the molecular sieves were filtered off, and the mixture was washed with saturated aqueous NaHCO₃. The aqueous layer was extracted twice with DCM, and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The resulting mixture was purified by silica gel column chromatography to provide the thiodisaccharide (65%): $[\alpha]_{\rm D} = -68$ (c = 1, DCM); IR (neat) ν (cm⁻¹) 729, 1060, 1361, 1717, 1744; ¹H NMR (400 MHz) δ 2.14 (s, 3H, CH₃ Lev), 2.54 (m, 2H, CH₂ Lev), 2.67 (m, 2H, CH₂ Lev), 3.46 (dd, 1H, J =

2.8 Hz, J = 9.6 Hz, H-3'), 3.51 (s, 3H, CH₃ CO₂Me), 3.64 (m, 4H, CH₃ CO₂Me, H-3), 3.72 (d, 1H, J = 10.0 Hz, H-5'), 3.81 (d, 1H, J = 2.8 Hz, H-2'), 3.85 (d, 1H, J = 9.6 Hz), 4.06 (d, 1H, J = 2.0 Hz, H-2), 4.40–4.52 (m, 3H, H-4, CH₂ Bn), 4.66–4.80 (m, 7H, H-1, H-1', 5 × CHHPh), 4.97 (d, 1H, J = 12.0 Hz, CHHPh), 5.43 (t, 1H, J = 9.6 Hz, H-4'), 7.19–7.54 (m, 25H, H_{arom}); ¹³C NMR (100 MHz) δ 27.8 (CH₂ Lev), 29.8 (CH₃ Lev), 37.7 (CH₂ Lev), 52.3 (CH₃ CO₂Me), 52.4 (CH₃ CO₂Me), 68.9 (C-4'), 73.1 (CH₂ Bn), 73.3 (C-5'), 74.3 (CH₂ Bn), 74.9 (C-2'), 75.1 (CH₂ Bn), 77.5 (C-2), 77.7 (C-4, C-5), 78.4 (C-3'), 81.2 (C-3), 81.2 ($J_{C1-H1} = 154$ Hz, C-1), 102.5 ($J_{C1'-H1'} = 159$ Hz, C-1'), 127.2, 127.3, 127.5, 127.7, 127.9, 128.1, 128.2, 128.3, 128.9, 130.7 (CH_{arom}), 135.2 (C_q SPh), 137.8 (C_q Bn), 138.0 (C_q Bn), 138.6 (C_q Bn), 138.7 (C_q Bn), 167.7 (C=O), 168.3 (C=O), 171.5 (C=O), 206.1 (C=O, Lev); HRMS [M + Na⁺] calcd for C₅₃H₅₆O₁₄NaS 971.3289, found 971.3293.

(2,3,4-Tri-O-benzyl-α/β-mannopyranosyluronic acid methyl ester)-1-(N-phenyl)-2,2,2-trifluoroacetimidate (13): 2,3,4-Tri-Obenzyl- α -mannopyranosyluronic acid methyl ester (20)⁸ (3.0 g, 5.3 mmol) was dissolved in DCM/H2O (0.2 M, 10/1) and treated with N-iodosuccinimide (NIS) (1.2 g, 5.3 mmol) and TFA (0.41 mL, 5.3 mmol) for 15 min, after which the reaction was quenched by the addition of saturated aqueous NaHCO3 and Na2S2O3. The layers were separated, and the aqueous layer was extracted once with DCM. The combined organic layers were dried (MgSO₄), filtered, and concentrated. Purification of the crude oil by column chromatography (80/20 PE/EtOAc 75/25 PE/EtOAc) gave the pure lactol (1.55 g, 3.23 mmol 61%). The lactol (330 mg, 0.690 mmol) was dissolved in acetone (4 mL), containing 5 drops of water. Trifluoroacetimidoyl chloride³⁵ and K₂CO₃ (190 mg, 1.38 mmol) were added, and the reaction mixture was stirred until TLC analysis indicated complete cenversion of the starting material. The reaction mixture was filtered and concentrated. Purification of the crude oil by column chromatography (100% toluene to 92.5/7.5 toluene/ EtOAc) gave the pure imidate ($\alpha/\beta = 5:1, 434$ mg, 0.668 mmol, 98%): IR (neat) ν (cm⁻¹) 736, 1101, 1708, 1749; ¹H NMR (400 MHz) major anomer (α) δ 3.66 (s, 3H, CH₃ CO₂Me), 3.81 (br s, 1H, H-2), 3.88 (dd, 1H, J = 3.2 Hz, J = 8.4 Hz, H-3), 4.29 (t, 1H, J = 8.4 Hz, H-4), 4.38 (d, 1H, J = 8.4 Hz, H-5), 4.53-4.83 (m, 6H, 3 × CH₂ Bn), 6.34 (br s, 1H, H-1), 6.75 (d, 2H, J = 8.0 Hz, CH_{arom}NPh), 7.06 (t, 1H, J = 8.8 Hz, CH_{arom}NPh), 7.25-7.33 (17H, CH_{arom}); ¹³C NMR (125 MHz) major anomer (α) δ 52.5 (CH₃ CO_2Me), 72.7 (2 × CH₂ Bn), 73.2 (C-2), 73.8 (C-5), 74.6 (CH₂ Bn), 75.8 (C-4), 77.4 (C-3), 94.8 ($J_{C1-H1} = 178$ Hz, C-1), 115.8 $(q, {}^{1}J_{C-F} = 285 \text{ Hz}, \text{ CF}_{3}), 119.3 \text{ (CH}_{arom}NPh), 124.3 \text{ (CH}_{arom}NPh),$ 126.9, 127.3, 127.5, 127.7, 127.8, 127.9, 128.2, 128.3, 128.6, 128.8, 129.1, 129.2, 129.7, 129.9 (CH_{arom}), 137.4 (C_q Bn), 137.6 (C_q Bn), 137.7 (C_q Bn), 143.2 (C_q NPh), 142.4 (q, ${}^{2}J_{C-F} = 36$ Hz, C=N), 168.7 (C=O); β-anomer ¹H NMR (400 MHz) diagnostic peaks 3.63 (s, CH₃ CO₂Me), 5.93 (br s, 1H, H-1); ¹³C NMR (125 MHz) diagnostic peaks 52.2 (CH₃ CO₂Me), 94.4 ($J_{C1-H1} = 166$ Hz, C-1); HRMS [M + Na⁺] calcd for $C_{36}H_{34}F_3O_7NNa$ 672.2185, found 672.2191.

(Allyl 1-deoxy-2,3,4-tri-*O*-benzyl- β -mannopyranosyluronic acid) methyl ester (15): (2,3,4-Tri-*O*-benzyl- α/β -mannopyranosyluronic acid methyl ester)-1-(*N*-phenyl)-2,2,2-trifluoroacetimidate (13) (110 mg, 0.169 mmol) and allylTMS (0.11 mL, 0.68 mmol) were dissolved in DCM (3.4 mL) and cooled to -60 °C. TMSOTf (6 μ L, 3.4 μ mol) was added, and the mixture was allowed to warm to -20 °C in 2 h, after which the reaction was quenched by the addition of Et₃N. The mixture was concentrated and the product purified by column chromatography (95/5 toluene/EtOAc to 90/10 toluene/EtOAc) to give the pure C-mannoside **15** (62 mg, 0.122 mmol, 73%): [α]_D = -36 (*c* 1); IR (neat) ν (cm⁻¹) 736, 1101, 1749; ¹H NMR (400 MHz) δ 2.29 (m, 1H, *CH*HCH=CH₂), 2.48 (m, 1H, CH*H*CH=CH₂), 3.35 (t, 1H, *J* = 6.8 Hz, H-1), 3.60 (dd, 1H, *J* = 2.8 Hz, *J* = 9.2 Hz, H-3), 3.70 (s, 3H, CH₃ CO₂Me), 3.76 (d, 1H, J = 2.8 Hz, H-2), 3.81 (d, J = 10.0 Hz, H-5), 4.23 (t, 1H, J = 9.2 Hz, H-4), 4.66 (2H, CH₂Ph), 4.73 (d, 1H, J = 11.6 Hz, CH*H*Ph), 4.77 (d, 1H, J = 11.6 Hz, CH*H*Ph), 4.85 (d, 1H, J = 12.4 Hz, CH*H*Ph), 5.01 (m, 3H, CH₂CH=CH₂, CH*H*Ph), 5.63 (m, 1H, CH₂CH=CH₂), 7.21-7.38 (m, 15H, H_{arom}); ¹³C NMR (100 MHz) δ 35.4 (CH₂CH=CH₂), 52.3 3 (CH₃ CO₂Me), 72.6 (CH₂Bn), 74.4 (CH₂Bn), 74.4 (C-2), 75.2 (CH₂Bn), 76.3 (C-4), 79.1 (C-5), 79.3 (C-1), 84.5 (C-3), 117.5 (CH₂CH=CH₂), 127.4, 127.6, 127.7, 128.0, 128.2, 128.3, 128.5 (CH_{arom}), 134.1 (CH₂CH=CH₂), 138.2 (C_q Bn), 138.5 (C_q Bn), 169.2 (C=O); HRMS [M + Na⁺] calcd for C₃₁H₃₄O₇Na 525.2253, found 525.2240.

Couplings of 16 and 17. 16 and **17** were condensed with benzyl alcohol (BnOH, 4 equiv), isopropanol (4 equiv), *tert*-butanol (4 equiv), and 1-adamantanol (4 equiv) as described by the general procedure for Ph₂SO-Tf₂O mediated glycosylations. The acceptor alcohols were added as a stock solution (5 M in DCM), which were dried over molecular sieves. Activation of the thiopyranosides was achieved at -78 °C for 5 min. The reactions were quenched after 15 min at -78 °C to prevent possible anomerization. Purification of the products was achieved by column chromatography. If complete separately isolated. If separation was not possible, the α/β -mixtures were isolated and analyzed.

6-Benzyloxy tetrahydropyran-2-carboxylic acid methyl ester (18a): The product was obtained from 16 (37 mg, 0.15 mmol) and benzylalcohol as an α/β -mixture ($\alpha/\beta = 1:7.7, 74\%$): IR (neat) ν (cm^{-1}) 997, 1738; ¹H NMR (400 MHz) δ 1.51–2.12 (m, 6.8 H, H-3, 4, 5 α + β), 3.77 (s, 3.1 H, CH₃ CO₂Me α + β), 4.08 (dd, 1H, J = 2.4 Hz, J = 10.0 Hz, H-6 β), 4.46 (dd, 0.13H, J = 2.4 Hz, J= 10.0 Hz, H-6 α), 4.52 (d, 1H, J = 9.2 Hz, H-2 β), 5.53 (d, 0.13 H, J = 12.0 Hz, CHHPh α), 4.62 (d, 1H, J = 12.0 Hz, CHHPh β), 4.76 (d, 0.13 H, J = 12.0 Hz, CH*H*Ph α), 4.95 (d, 1 H, J = 12.0Hz, CH*H*Ph β), 5.08 (s, 0.13H, H-2 α); 7.26–7.35 (m, 5.7H, H_{arom}); ¹³C NMR (125 MHz) δ 17.7 (α), 21.2 (β), 27.7 (β), 28.2 (α), 29.1 (α), 30.5 (β) (C-3, C-4, C-5), 52.1 (CH₃ CO₂Me $\alpha + \beta$), 68.5 (C-6 α), 69.0 (CH₂ Bn α), 70.0 (CH₂ Bn β), 74.4 (C-6β), 97.0 (C-1α), 100.8 (C-1 β), 127.6, 127.8, 127.9, 128.3, 128.4 (CH_{arom} $\alpha + \beta$), 137.7 $(C_q Ph \beta)$, 138.4 $(C_q Ph \alpha)$, 171.3 $(C=O, \beta)$, 172.3 $(C=O, \alpha)$; HRMS $[M + Na^+]$ calcd for $C_{14}H_{18}O_4Na$ 273.1103, found 273.1098.

6-Isopropyloxy tetrahydropyran-2-carboxylic acid methyl ester (18b): The product was obtained from 16 (87 mg, 0.35 mmol) and isopropanol as an α/β-mixture (α/β = 1:3.8, 48%): IR (neat) ν (cm⁻¹) 1037, 1755; ¹H NMR (400 MHz) δ 1.12 (d, 0.78H, CH₃ *i*Pr α), 1.14 (d, 3H, CH₃ *i*Pr β), 1.21 (d, 0.78H, CH₃ *i*Pr α), 1.26 (d, 3H, CH₃ *i*Pr β), 1.38–1.95 (m, 7.6H, H-3, 4, 5 α+β), 3.75 (3.8 H, CH₃ CO₂Me α+β), 3.93 (m, 0.26H, CH *i*Pr α), 4.06 (m, 2H, CH *i*Pr β, C-6 β), 4.46 (d, 0.26H, J = 11.6 Hz, H-6 α), 4.53 (d, 1H, J = 9.2 Hz, H-2 β), 5.07 (s, 0.26H, H-1α); ¹³C NMR (125 MHz) δ 17.7 (α), 21.9 (β), 27.7 (β), 28.3 (α), 29.6 (α), 31.0 (β) (C-3, 4, 5), 21.3 (CH₃ *i*Pr α), 21.6 (CH₃ *i*Pr β), 23.3 (CH₃ *i*Pr α), 23.5 (CH₃ *i*Pr β), 52.0 (CH₃ CO₂Me α+β), 68.1 (C-6α), 68.4 (CH₃ *i*Pr α), 70.0 (CH₃ *i*Pr β), 74.7 (C-6β), 95.0 (C-2α), 100.1 (C-2α), 171.2 (C=O); HRMS [M + Na⁺] calcd for C₁₀H₁₈O₄Na 225.1103, found 225.1099.

6-tert-Butyloxy tetrahydropyran-2-carboxylic acid methyl ester (18c): The products were obtained from 16 (62 mg, 0.25 mmol) and *tert*-butanol as pure anomers (α/β = 1:2.9, 52%); IR (neat) ν (cm⁻¹) 1038, 1740; α-anomer, ¹H NMR (400 MHz) δ 1.24 (s, 9H, *t*Bu), 1.51–1.95 (m, 6H, H-3, 4, 5), 3.75 (s, 3H, CH₃ COOMe), 4.57 (d, 1H, J = 10.4 Hz, H-6), 5.25 (s, 1H, Hz, H-2); ¹³C NMR (125 MHz) δ 17.9, 28.2, 31.0 (C-3, C-4, C-5), 28.4 (CH₃ *t*Bu), 52.0 (CH₃ CO₂Me), 68.7 (C-6), 74.5 (C_q *t*Bu), 91.9 (C-2), 172.9 (C=O); β-anomer, ¹H NMR (400 MHz) δ 1.27 (s, 9H, *t*Bu), 1.49–1.96 (m, 6H, H-3, 4, 5), 3.75 (s, 3H, CH₃ COOMe), 4.04 (dd, 1H, J = 2.4 Hz, J = 10.8 Hz, H-6), 4.63 (dd, 1H, J = 2.0 Hz, J = 10.8 Hz, H-2); ¹³C NMR (125 MHz) δ 22.2, 27.5, 31.8 (C-3, C-4, C-5), 28.7 (CH₃ *t*Bu), 52.0 (CH₃ CO₂Me), 74.6 (C-6), 75.2

⁽³⁵⁾ Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama, K. J. Org. Chem. **1993**, 58, 32–35.

 $(C_q tBu)$, 96.8 (C-2), 171.2 (C=O); HRMS [M + Na⁺] calcd for $C_{10}H_{18}O_4Na$ 239.1254, found 239.1254.

6-Adamantyloxy tetrahydropyran-2-carboxylic acid methyl ester (18d): The product was obtained from 16 (48 mg, 0.19 mmol) and 1-adamantanol as an α/β-mixture (α/β = 1:1.2, 52%), containing Ph₂SO and 1-adamantanol: ¹H NMR (400 MHz) δ 1.33–2.13 (m, 46.2H, H-3, 4, 5, CH and CH₂ adamantanol, α+β), 3.73 (s, 3H, CH₃ CO₂Me α), 3.74 (s, 3.6H, CH₃ CO₂Me β), 4.05 (dd, 1.2H, J = 2.4 Hz, J = 10.8 Hz, H-6 β), 4.60 (dd, 1H, J = 2.4 Hz, J =10.8 Hz, H-6 α), 4.75 (d, 1.2H, J = H2 β), 5.39 (s, 1H, H-2 α); ¹³C NMR (100 MHz) δ 17.8 (α), 22.1 (β), 27.5 (β), 28.3 (α), 30.8 (α), 31.7 (β) (C-3, 4, 5), 30.5 (CH Ada), 36.3 (CH₂ Ada), 42.4 (CH₂ Ada), 51.9 (CH₃ CO₂Me α+β), 68.5 (C-6 α), 73.5 (C_q Ada α), 74.4 (C_q Ada β), 74.5 (C-6 β), 90.2 (C-2 α), 94.5 (C-2 α), 171.2 (C=O β), 172.8 (C=O α); HRMS [M + Na⁺] calcd for C₁₇H₂₆O₄Na 317.1729, found 317.1724.

6-Benzyloxymethyl-2-benzyloxytetrahydropyran (19a): The product was obtained from 17 (94 mg, 0.30 mmol) and benzylalcohol as an α/β -mixture ($\alpha/\beta = 1:1.4, 82\%$): IR (neat) ν (cm⁻¹) 739, 1037, 1454; ¹H NMR (400 MHz) δ 1.23–1.89 (m, 14.1H, H-3, 4, 5, $\alpha + \beta$), 3.44–3.53 (m, 3.35H, 2 × H-7 α , H-7 β), 3.59 $(m, 2.7H, H-6\beta, H-7\beta), 4.03 (m, 1H, H-6\alpha), 4.78 (m, 2.35H, H-1\beta),$ CHHPh α), 4.53–4.65 (m, 6.05H, 2 × CHHPh α , 3 × CHHPh β), 4.76 (d, 1H, J = 12.0 Hz,CHHPh α), 4.76 (d, 1.35H, J = 12.0Hz,CHHPh β), 4.96 (m, 1H, H-1α), 7.22–7.37 (m, 23.5H, H_{arom}); ¹³C NMR (100 MHz) δ 17.7 (α), 21.7 (β), 27.4 (β), 27.5 (α), 29.5 (α), 31.0 (β) (C-3, C-4, C-5), 68.1 (C-6 α), 68.3 (CH₂ Bn α), 69.8 (CH₂ Bn β), 73.2, 73.3, 73.4, 73.5 (C-7α, C-7β,CH₂ Bn α, CH₂Bn β), 75.4 (C-6 β), 96.5 (C-2 α), 100.9 (C-2 β), 126.9, 127.4, 127.5, 127.6, 127.8, 127.9, 128.3, 128.4 (CH_{arom} α+β), 137.9, 138.4 (C_q Ph α + β); HRMS [M + Na⁺] calcd for C₂₀H₂₄O₃Na 335.1623, found 335.1618.

6-Benzyloxymethyl-2-isopropyloxytetrahydropyran (19b): The product was obtained from 17 (101 mg, 0.32 mmol) and isopropanol as an α/β -mixture ($\alpha/\beta = 1:0.6, 61\%$): IR (neat) ν (cm⁻¹) 741, 1037, 1454; ¹H NMR (400 MHz) δ 1.12 (m, 4.8H, CH₃ *i*Pr $\alpha + \beta$), 1.23 (m, 4.8H, CH₃ *i*Pr $\alpha + \beta$), 1.32–1.92 (m, 9.6H, H-3, 4, 5, $\alpha + \beta$), 3.40–3.50 (m, 2.6H, 2 × H-7 α , H-7 β), 3.57 (m, 0.6H, H-7β), 3.66 (m, 0.6H, H-6β), 3.91-4.07 (m, 2.6H, H-6α, CH *i*Pr $\alpha + \beta$), 4.50 (d, 0,6H, J = 8.4 Hz, H-1 β), 4.54–4.62 (m, 3.2H, 2 \times CHHPh α , 2 \times CHHPh β), 4.99 (s, 1H, H-1 α), 7.14–7.33 (m, 8H, H_{arom}); ¹³C NMR (100 MHz) δ 17.7 (α), 21.4 $(CH_3 iPr \alpha)$, 21.8 $(CH_3 iPr \beta)$, 22.0 (β) , 27.5 (β) , 27.6 (α) , 30.0 (α), 31.6 (β) (C-3, C-4, C-5), 67.5 (CH *i*Pr β), 67.8 (CH *i*Pr β), 69.8 (C-6 α), 73.2, 73.4, 73.6 (C-7α, C-7β,CH₂ Bn α, CH₂Bn β), 75.4 (C-6 β), 94.7 (C-2 α), 100.1 (C-2 β), 127.4, 127.5, 128.2, 128.3 (CH_{arom} $\alpha + \beta$), 138.5 (C_q Ph $\alpha + \beta$); HRMS [M + Na⁺] calcd for C₁₆H₂₄O₃Na 287.1623, found 287.1619.

6-Benzyloxymethyl-2-tert-butyloxytetrahydropyran (19c): The products were obtained from 17 (94 mg, 0.30 mmol) and tertbutanol as pure anomers ($\alpha/\beta = 1:0.38, 60\%$): IR (neat) ν (cm⁻¹) 741, 1101, 1479; α -anomer, ¹H NMR (400 MHz) δ 1.25 (s, 9H, CH₃ tBu), 1.40 (m, 1H), 1.50-1.68 (m, 4H), 1.87 (m, 1H, H-3, 4, 5), 3.38–3.46 (m, 2H, 2 × H-7), 4.13 (m, 1H, H-6), 4.53 (d, 1H, J = 12.4 Hz, CHHPh), 4.57 (d, 1H, J = 12.4 Hz, CHHPh), 5.17 (d, 1H, J = 2.8 Hz, H-1), 7.24–7.32 (m, 5H, H_{arom}); ¹³C NMR (100 MHz) δ 17.7, 27.9, 31.3 (C-3, C-4, C-5), 28.8 (CH₃ tBu), 67.4 (C-6), 73.2, 73.8 (C-7, CH₂ Bn), 91.5 (C-1), 127.3, 127.4, 128.2 (CH_{arom}), 138.6 (C_q Ph); β -anomer, ¹H NMR (400 MHz) δ 1.27 (s, 9H, CH₃ tBu), 1.21 (m, 1H), 1.42-1.61 (m, 4H), 1.87 (m, 1H, H-3, 4, 5), 3.47 (dd, 1H, J = 5.2 Hz, J = 10.0 Hz, H-7), 3.55 (d, 1H, J = 6.0 Hz, J = 10.0 Hz, H-7), 3.64 (m, 1H, H-6), 4.53 (d, 1H, J = 12.0 Hz, CHHPh), 4.59 (d, 1H, J = 12.4 Hz, CHHPh), 4.61 (dd, 1H, J = 2.4 Hz, J = 9.6 Hz, H-1), 7.25–7.32 (m, 5H, H_{arom}); ¹³C NMR (100 MHz) δ 22.4, 27.4, 32.5 (C-3, C-4, C-5), 28.8 (CH₃ tBu), 73.4 (CH₂ Bn), 73.6 (C-7), 75.3 (C-6), 96.6 (C-2), 127.4, 127.5, 128.3 (CH_{arom}), 138.5 (C_q Ph); HRMS [M + Na⁺] calcd for C₁₇H₂₆O₃Na 301.1780, found 301.1775.

6-Benzyloxymethyl-2-adamantyloxytetrahydropyran (19d): The products were obtained from 17 (94 mg, 0.30 mmol) and 1-adamantanol as pure anomers ($\alpha/\beta = 1:0.33, 74\%$): IR (neat) ν (cm⁻¹) 736, 1078, 1439; α -anomer, ¹H NMR (400 MHz) δ 1.33 (m, 1H), 1.50-1.69 (m, 10H), 1.79-1.95 (m, 7H, H-3, 4, $5 + 6 \times$ CH₂ Ada), 2.10 (br s, 3H, 3 \times CH Ada), 3.39–3.48 (m, 2H, 2 \times H-7), 4.17 (m, 1H, H-6), 4.53 (d, 1H, J = 12.4 Hz, CHHPh), 4.57 (d, 1H, J = 12.4 Hz, CH*H*Ph), 5.30 (d, 1H, J = 2.8 Hz, H-1), 7.22–7.36 (m, 5H, H_{arom}); $^{13}\mathrm{C}$ NMR (100 MHz) δ 17.7, 27.9, 31.3 (C-3, C-4, C-5), 30.6 (CH Ada), 36.4 (CH₂ Ada), 42.7 (CH₂ Ada), 67.4 (C-6), 73.3, 73.9 (C-7, CH₂ Bn), 90.0 (C-1), 127.3, 128.2 (CH_{arom}), 138.6 (C_q Ph); β -anomer, ¹H NMR (400 MHz) δ 1.26 (m, 1H), 1.41-1.65 (m, 10H), 1.79-1.89 (m, 7H, H-3, 4, $5 + 6 \times$ CH₂ Ada), 2.10 (br s, 3H, $3 \times$ CH Ada), 3.47 (dd, 1H, J = 4.4 Hz, J = 9.6 Hz, H-7), 3.55 (d, 1H, J = 6.4 Hz, J 10.0 Hz, H-7), 3.64 (m, 1H, H-6), 4.53 (d, 1H, J = 12.0 Hz, CHHPh), 4.59 (d, 1H, J = 12.4 Hz, CH*H*Ph), 4.72 (dd, 1H, *J* = 2.8 Hz, *J* = 8.8 Hz, H-1), 7.24–7.35 (m, 5H, H_{aron}); 13 C NMR (100 MHz) δ 22.4, 27.4, 32.5 (C-3, C-4, C-5), 30.7 (CH Ada), 36.3 (CH2 Ada), 42.7 (CH2 Ada), 73.4 (CH₂ Bn), 73.7 (C-7), 76.7 (C-6), 94.8 (C-2), 127.4, 127.5, 128.3 (CH_{arom}), 138.5 (C_q Ph); HRMS [M + Na⁺] calcd for C₂₃H₃₂O₃Na 379.2249, found 379.2244.

Phenyl (methyl 2,3-di-O-benzyl-4-O-(methyl 2,3,4-tri-O-benzyl- β -D-mannopyranosyl uronate)-1-thio- β -D-mannopyranosyl uronate) (21): The title compound was synthesized form CB-Mannoside 22 (800 mg, 1.29 mmol) and thiomannoside 11 (929 mg, 1.93 mmol) as described for 12: $[\alpha]_D = -55$ (c 1, DCM); IR (neat) ν (cm⁻¹) 737, 1063, 1749; ¹H NMR (400 MHz) δ 3.49 (dd, 1H, J = 2.8 Hz, J = 9.6 Hz, H-3'), 3.53 (s, 3H, CH₃ CO₂Me), 3.64 (m, 4H, CH₃ CO₂Me, H-3), 3.79 (d, 1H, J = 10.0 Hz, H-5'), 3.83(d, 1H, J = 2.8 Hz, H-2'), 3.86 (d, 1H, J = 9.6 Hz), 4.05 (d, 1H, J = 2.0 Hz, H-2), 4.19 (t, 1H, J = 9.6 Hz, H-4'), 4.51 (t, 1H, J =9.6 Hz, H-4), 4.56 (s, 2H, CH_2 Bn), 4.60–4.64 (m, 2H, 2 \times CHHPh), 4.64 (s, 1H, H-1'), 4.73 (d, 1H, J = 10.8 Hz, CHHPh), 4.78-4.86 (m, 4H, H-1, 3 × CHHPh), 4.96 (d, 1H, J = 12.0 Hz, CH*H*Ph), 4.98 (d, 1H, *J* = 12.0 Hz, CH*H*Ph), 7.20–7.46 (m, 30H, H_{arom}); ¹³C NMR (100 MHz) δ 52.5 (CH₃ CO₂Me), 52.9 (CH₃ CO₂Me), 72.3 (CH₂ Bn), 73.8 (CH₂ Bn), 74.9 (CH₂ Bn), 77.5 (2 \times CH₂Bn), 75.6 (C-5'), 75.8 (C-2'), 76.1 (C-4'), 77.8 (C-4), 77.9 (C-2),78.3 (C-5), 81.7 (C-3), 81.9 (C-3'), 89.4 (*J*_{C1-H1} = 154 Hz, C-1), 103.3 ($J_{C1'-H1'} = 156$ Hz, C-1'), 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 128.0, 128.1, 128.2, 128.3, 128.5, 128.9, 129.0, 129.2, 130.2, 130.7, 130.8 (CHarom), 135.3 (Cq SPh), 137.8 (Cq Bn), 138.0 (2xCq Bn), 138.1 (C_q Bn), 138.3 (C_q Bn), 138.6 (C_q Bn), 138.8 (C_q Bn), 168.8 (C=O), 169.1 (C=O); HRMS [M + NH₄⁺] calcd for C₅₅H₆₀O₁₂NS 958.3831, found 958.3841.

(Carboxylbenzyl 2,3,4-tri-*O*-benzyl-β-mannopyranosyluronic acid) methyl ester (22): The title compound was synthesized from **20**⁸ (1.72 g, 3.0 mmol) and 2-hydroxymethyl-benzoic acid benzyl ester (2.2 g, 9.1 mmol) as described for 10 ($\alpha/\beta = 1.6, 65\%$ over 2 steps): IR (neat) ν (cm⁻¹) 731, 1278, 1680, 1715, 1734; β -anomer, ¹H NMR (400 MHz) δ 3.57 (dd, 1H, J = 2.4 Hz, J = 9.2 Hz, H-3), 3.66 (s, 3H, CH₃ CO₂Me), 3.92 (d, 1H, J = 8.8 Hz, H-5), 3.98 (s, 1H, H-2), 4.30 (t, 1H, J = 8.8 Hz), 4.48 (d, 1H, J = 11.6 Hz, CHHPh), 4.64 (m, 2H, H-1, CHHPh), 4.86 (m, 2H, 2 \times CHHPh), 5.00 (d, 1H, J = 12.4 Hz, CHHPh), 5.07 (d, 1H, J = 14.4 Hz, CHHPh), 5.34 (d, 1H, J = 14.0 Hz, CHHPh), 7.21-7.60 (m, 17H, H_{arom}), 7.65 (d, 1H, J = 7.6 Hz), 8.05 (d, 1H, J = 8.0Hz), 9.0 (br s, 1H, CO₂H); 13 C NMR (100 MHz) δ 52.3 (CH₃ CO₂Me), 70.0 (CH₂ Bn), 61.6 (CH₂ Bn), 73.7 (C-2), 73.9 (CH₂ Bn), 74.9 (CH₂ Bn), 75.0 (C-5), 75.8 (C-4), 80.9 (C-3), 101.5 $(J_{C1-H1} = 159 \text{ Hz}, \text{C-1}), 126.9 (C_q \text{ CB}), 127.1, 127.4, 127.5, 127.6,$ 127.7, 127.8, 127.9, 128.1, 128.2, 129.7, 131.3, 133.1 (CH_{arom}), 137.9 (C_q Bn), 138.0 (C_q Bn), 138.3 (C_q Bn), 140.5 (C_q CB), 168.9 (C=O), 171.9 (C=O); HRMS $[M + Na^+]$ calcd for $C_{36}H_{36}O_9Na$ 635.2251, found 635.2248.

3-Azidopropyl (methyl 2,3-di-O-benzyl-4-O-levulinoyl- β -D-mannopyranosyl uronate) (23): The title compound was synthesized from 8 (3.2 g, 5.6 mmol) and 3-azidopropanol (1.13 g, 11.2

mmol) as described by the general procedure for Ph₂SO-Tf₂O mediated glycosylations at -78 °C ($\alpha/\beta = 1:10, 72\%$): [α]_D = -56 (c 1); IR (neat) ν (cm⁻¹) 741, 1153, 1719, 1755, 2097; ¹H NMR (400 MHz) δ 1.88 (m, 2H, CH₂CH₂CH₂), 2.16 (s, 3H, CH₃ Lev), 2.54 (m, 2H, CH₂ Lev), 2.71 (m, 2H, CH₂ Lev), 3.38 (t, 2H, J = 6.8 Hz, CH₂N₃), 3.53 (m, 2H, H-3, O-CH*H*CH₂), 3.71 (s, 3H, CO₂Me), 3.87 (m, 2H, H-2, H-5), 4.03 (m, 1H, O-CHHCH₂), 4.41 (d, 1H, J = 12.4 Hz, CHHPh), 4.43 (s, 1H, H-1), 4.53 (d, 1H, J = 12.4 Hz, CHHPh), 4.80 (d, 1H, J = 12.8 Hz, CHHPh), 4.91 (d, 1H, J = 12.4 Hz, CHHPh), 5.53 (t, 1H, J = 9.6 Hz), 7.24–7.42 (m, 10H, H_{arom}); ¹³C NMR (100 MHz) δ 27.9 (CH₂ Lev), 29.0 (CH₂ CH₂CH₂CH₂), 29.8 (CH₃ Lev), 37.7 (CH₂ Lev), 48.2 (CH₂N₃), 52.6 (CO₂CH₃), 66.9 (O-CH₂CH₂), 69.1 (C-4), 73.1, 73.5 (C-2 and C-5), 73.8 (CH₂ Bn), 78.0 (C-3), 101.5 ($J_{C1-H-1} = 158$ Hz, C-1), 127.5, 127.7, 128.0, 128.3 (Carom), 137.7 (Cq Ph), 138.2 (Cq Ph), 167.9 (C=O), 171.5 (C=O), 206.2 (C=O Lev); HRMS [M + Na⁺] calcd for C₂₉H₃₅O₉N₃Na 592.2271, found 592.2261.

3-Azidopropyl (methyl (2,3-di-O-benzyl- β -D-mannopyranoside)uronate) (24): Mannuronic acid 23 (2.28 g, 4.0 mmol) was delevulinoylated as described by the general procedure for levulinoyl cleavage (99%). Spectroscopic data were identical to those reported previously.^{8a}

3-Azidopropyl (methyl 2,3-di-O-benzyl-4-O-(methyl 2,3,4-tri-*O*-benzyl- β -D-mannopyranosyl uronate)- β -D-mannopyranoside uronate) (25): The title compound was synthesized from 20 (106 mg, 0.19 mmol) and 24 (70 mg, 0.15 mmol) as described by the general procedure for BSP-Tf₂O mediated glycosylations (67%): $[\alpha]_{\rm D} = -33 \ (c \ 1, \text{DCM}); \text{ IR (neat) } \nu \ (\text{cm}^{-1}) \ 739, \ 1064, \ 1747, \ 2097;$ ¹H NMR (400 MHz) δ 1.84 (m, 2H, CH₂CH₂CH₂), 3.32 (t, 1H, J = 6.8 Hz, CH₂N₃), 3.48 (m, 2H, O-CHHCH₂, H-3), 3.55 (s, 3H, CH₃ CO₂Me), 3.61 (m, 4H, H-3, CH₃ CO₂Me), 3.75 (d, 1H, J =9.5 Hz, H-5), 3.82 (d, 1H, J = 3.0 Hz, H-2), 3.85 (d, 1H, J = 2.4 Hz, H-2), 3.88 (d, 1H, J = 8.4 Hz, H-5), 3.99 (m, 1H, O-CHHCH₂), 4.18 (t, 1H, J = 9.6 Hz, H-4), 4.42 (t, 1H, J = 9.5 Hz, H-4), 4.46 (s, 1H, H-1), 4.52-4.62 (m, 4H, 2 × CH₂ Bn), 4.69 (s, 1H, H-1), 4.71-4.85 (m, 6H, 3 × CH₂ Bn), 7.19–7.40 (m, 25H, H_{arom}); ¹³C NMR (100 MHz) δ 28.9 (CH₂ CH₂CH₂CH₂), 48.1 (CH₂N₃), 52.0 (CH₃ CO₂Me), 52.2 (CH₃ CO₂Me), 66.7 (O-CH₂CH₂), 71.7 (CH₂ Bn), 72.3 (CH₂ Bn), 73.7 (CH₂ Bn), 74.0 (C-2), 74.3 (C-5), 74.4 (CH₂ Bn), 75.0 (C-5), 75.0 (CH₂ Bn), 75.2 (C-2), 75.6 (C-4), 77.3 (C-4), 79.1 (C-3), 81.3 (C-3), 101.6 ($J_{C1-H1} = 156$ Hz, C-1), 102.5 $(J_{C1-H1} = 155 \text{ Hz}, \text{ C-1}), 127.2, 127.3, 127.4, 127.5, 127.6, 127.7,$ 127.9, 128.0, 128.1, 128.3 (CH_{arom}), 137.9 (C_q Bn), 138.0 (C_q Bn), 138.3 (C_q Bn), 138.5 (C_q Bn), 138.8 (C_q Bn), 168.6 (2 × C=O); HRMS $[M + NH_4^+]$ calcd for $C_{52}H_{610}O_{13}N_4$ 949.4230, found 949.4241.

3-Azidopropyl (methyl 2,3-di-*O*-benzyl-4-*O*-(methyl 2,3-di-*O*-benzyl-4-*O*-levulinoyl- β -D-mannopyranosyl uronate)- β -Dmannopyranoside uronate) (26): The title compound was synthesized from 20 (80 mg, 0.14 mmol) and 24 (83 mg, 0.18 mmol) as described by the general procedure for BSP-Tf₂O mediated glycosylations (62%). Spectroscopic data were identical to those reported previously.^{8a}

3-Azidopropyl (methyl 2,3-di-*O*-benzyl-4-*O*-(methyl 2,3-di-*O*-benzyl- β -D-mannopyranosyl uronate)- β -D-mannopyranoside uronate) (27): Dimannuronic acid 26 (65 mg, 0.069 mmol) was delevulinoylated as described by the general procedure for levulinoyl cleavage (95%). Spectroscopic data were identical to those reported previously.^{8a}

3-Azidopropyl (methyl 2,3-di-*O*-benzyl-4-*O*-(methyl 2,3-di-*O*-benzyl-4-*O*-(methyl 2,3,4-tri-*O*-benzyl- β -D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranoside uronate) (28): The title compound was synthesized from 21 (100 mg, 0.11 mmol) and 24 (75 mg, 0.16 mmol) as described by the general procedure for BSP-Tf₂O mediated glycosylations (74%): [α]_D = -55 (*c* 1, DCM); IR (neat) ν (cm⁻¹) 739, 1059, 1749, 2095; ¹H NMR (400 MHz) δ 1.86 (m, 2H, CH₂CH₂CH₂), 3.33 (t, 1H, *J* = 6.8 Hz, CH₂N₃), 3.44 (m, 4H, H-3, CH₃ CO₂Me), 3.47-3.55 (m, 5H, H-3, O-CHHCH₂, CH₃ CO₂Me), 3.57 (m, 4H, H-3, CH₃ CO_2Me), 3.73 (m, 3H, H-2, 2 × H-5), 3.78–3.84 (m, 3H, 2 × H-2, H-5), 4.01 (m, 1H, O-CH*H*CH₂), 4.16 (t,1H, *J* = 9.6 Hz, H-4), 4.32 (t, 1H, J = 9.5 Hz, H-4), 4.41 (t, 1H, J = 9.5 Hz, H-4), 4.44 (s, 1H, H-1), 4.49-4.61 (m, 7H, H-1, 6 × CHHPh), 4.69-4.85 (m, 10H, H-1, 9 × CH*H*Ph), 7.18–7.40 (m, 35H, H_{arom}); ¹³C NMR (100 MHz) δ 29.0 (CH₂ CH₂CH₂CH₂), 48.2 (CH₂N₃), 52.0 (2 × CH₃ CO₂Me), 52.3 (CH₃ CO₂Me), 66.7 (O-CH₂CH₂), 71.7 (CH₂ Bn), 72.3 (CH₂ Bn), 72.7 (CH₂ Bn), 73.8 (CH₂ Bn), 74.3 (CH₂ Bn), 74.4 (CH₂ Bn), 75.0 (CH₂ Bn), 74.2, 74.4, 74.4, 75.0, 75.1, 75.2, 75.6 (3 \times C-2 and 3 \times C-5), 76.0 (C-4), 77.2 (C-4), 77.4 (C-4), 79.2 (C-3), 79.6 (C-3), 81.3 (C-3), 101.6 ($J_{C1-H1} = 155 \text{ Hz}$, C-1), 102.3 ($J_{C1-H1} = 157$ Hz, C-1), 102.7 ($J_{C1-H1} = 155$ Hz, C-1), 127.2, 127.4, 127.5, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3 (CH_{arom}), 138.0 (C_q Bn), 138.2 (C_q Bn), 138.4 (C_q Bn), 138.7 (C_q Bn), 138.8 (C_q Bn), 138.9 (C_q Bn), 168.6 (3 × C=O); HRMS [M $+ NH_4^+$ calcd for $C_{73}H_{83}O_{19}N_4$ 1319.56460, found 1319.56664, $[M + Na^+]$ calcd for $C_{73}H_{79}O_{19}N_3$ 1324.5200, found 1324.5217.

3-Azidopropyl (methyl 2,3-di-*O*-benzyl-4-*O*-(methyl 2,3-di-*O*-benzyl-4-*O*-(methyl 2,3-di-*O*-benzyl-4-*O*-levulinoyl- β -D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranoside uronate) (29): The title compound was synthesized from 21 (362 mg, 0.38 mmol) and 24 (225 mg, 0.48 mmol) as described by the general procedure for BSP-Tf₂O mediated glycosylations (51%). Spectroscopic data were identical to those reported previously.⁸

3-Azidopropyl (methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-O-benzyl-β-D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranoside uronate) (30): Trimannuronic acid 29 (71 mg, 0.054 mmol) was delevulinoylated as described by the general procedure for levulinoyl cleavage (78%): $[\alpha]_D = -67$ (*c* 1, DCM); IR (neat) ν (cm⁻¹) 727, 1055, 1747, 2097; ¹H NMR (500 MHz) δ ¹H NMR (400 MHz) 1.85 (m, 2H, CH₂CH₂CH₂), 2.98 (br s, 1H, 3"-OH), 3.27 (dd, 1H, J = 2.5 Hz, J = 9.5 Hz, H-3), 3.34 (t, 1H, J = 6.5 Hz, CH₂N₃), 3.47 (s, 3H, CH₃ CO₂Me), 3.50-3.62 (m, 10H, 2 × H-3, H-5, O-CHHCH₂, 2 × CH₃ CO₂Me), 3.73–3.88 (m, 5H, 3 × H-2, 2 × H-5), 4.01 (m, 1H, O-CHHCH₂), 4.17 (t, 1H, J = 9.5 Hz, H-4), 4.36 (t, 1H, J = 9.0 Hz, H-4), 4.42 (t, 1H, J = 9.0 Hz, H-4), 4.45 (s, 1H, H-1), 4.52-4.58 (m, 4H, 4 × CHHPh), 4.62 (s, H-1), 4.64 (d, 1H, J = 13.5 Hz, CHHPh), 4.72 (s, 1H, H-1), 4.72-4.83 (m, 7H, 7 × CH*H*Ph), 7.18–7.38 (m, 30H, H_{arom}); ¹³C NMR (125 MHz) δ 29.0 (CH₂ CH₂CH₂CH₂), 48.2 (CH₂N₃), 52.1 (CH₃ CO₂Me), 52.2 (CH₃ CO₂Me), 52.3 (CH₃ CO₂Me), 66.8 (O-CH₂CH₂), 68.1 (C-4), 71.7 (CH₂ Bn), 72.3 (CH₂ Bn), 73.8 (CH₂ Bn), 74.5 (CH₂ Bn), 74.1, 74.4, 74.7, 75.0, 75.1, 75.7, (3 \times C-2 and 3 \times C-5), 77.1 (C-4), 77.2 (C-4), 79.3 (C-3), 79.7 (C-3), 80.3 (C-3), 101.7 (C-1), 102.3 (C-1), 102.5 (C-1), 127.1, 127.2, 127.3, 127.4, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.4 (CH_{arom}), 137.9 (C_q Bn), 138.3 (C_q Bn), 138.6 (C_q Bn), 138.7 (C_q Bn), 168.5 (C=O), 168.6 (C=O), 169.8 (C=O); \hat{HRMS} [M + N \hat{H}_4^+] calcd for C₆₆H₇₇O₁₉N₄ 1229.51765, found 1229.51990, $[M + Na^+]$ calcd for $C_{66}H_{73}O_{19}N_3$ 1234.4730, found 1234.4753.

3-Azidopropyl (methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-O-benzyl-4-O-(methyl 2,3,4-tri-Obenzyl- β -D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranoside uronate) (31): The title compound was synthesized from 21 (124) mg, 0.13 mmol) and 27 (74 mg, 0.088 mmol) as described by the general procedure for BSP-Tf₂O mediated glycosylations (67%): $[\alpha]_{\rm D} = -56 \ (c \ 1, \text{DCM}); \text{ IR (neat) } \nu \ (\text{cm}^{-1}) \ 738, \ 1057, \ 1747, \ 2096;$ ¹H NMR (400 MHz) δ 1.86 (m, 2H, CH₂CH₂CH₂), 3.42 (t, 1H, J = 6.8 Hz, CH₂N₃), 3.40 (s, 3H, CH₃ CO₂Me), 3.41 (s, 3H, CH₃ CO₂Me), 3.41–3.58 (m, 11H, 4 \times H-3, O-CHHCH₂, 2 \times CH₃CO₂Me), 3.69-3.75 (m, 5H, 2 × H-2, 3 × H-5), 3.80-3.84 $(m, 3H, 2 \times H-2, H-5), 4.02 (m, 1H, O-CHHCH₂), 4.15 (t, 1H, J =$ 9.6 Hz, H-4), 4.30 (m, 2H, $2 \times$ H-4), 4.40 (t, 1H, J = 9.6 Hz, H-4), 4.44 (s, 1H, H-1), 4.49–4.54 (m, 5H, 5 × CH*H*Ph), 4.58-4.60 (m, 3H, 2 × H-1, CHHPh), 4.68-4.83 (m, 12H, H-1, $11 \times CHHPh$), 7.22–7.40 (m, 45H, H_{arom}); ¹³C NMR (100 MHz)

δ 29.0 (CH₂ CH₂CH₂CH₂), 48.2 (CH₂N₃), 52.0 (2 × CH₃ CO₂Me), 52.1 (CH₃ CO₂Me), 52.3 (CH₃ CO₂Me), 66.8 (O-CH₂CH₂), 71.7 (CH₂ Bn), 72.3 (CH₂ Bn), 72.5 (CH₂ Bn), 73.9 (CH₂ Bn), 74.4 (CH₂ Bn), 74.5 (CH₂ Bn), 75.0 (CH₂ Bn), 74.2, 74.4, 74.5, 74.5, 75.0, 75.2, 75.9, 76.0 (4 × C-2 and 4 × C-5), 75.6 (C-4), 77.1 (C-4), 77.3 (C-4), 77.4 (C-4), 79.2 (C-3), 79.6 (C-3), 79.7 (C-3), 81.4 (C-3), 101.7 (J_{C1-H1} = 155 Hz, C-1), 102.3 (J_{C1-H1} = 157 Hz, C-1), 102.5 (J_{C1-H1} = 158 Hz, C-1), 102.7 (J_{C1-H1} = 155 Hz, C-1), 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 127.9, 128.0, 128.1, 128.2, 128.3 (CH_{arom}), 138.0 (C_q Bn), 138.2 (C_q Bn), 138.3 (C_q Bn), 138.6 (C_q Bn), 138.8 (C_q Bn), 138.9 (C_q Bn), 168.6 (C=O), 168.6 (C=O), 168.7 (C=O); HRMS [M + NH₄⁺] calcd for C₉₄H₁₀₅O₂₅N₄ 1689.7096, found 1689.7075.

3-Azidopropyl (methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-O-benzyl-4-O-(methyl 2,3-di-Obenzyl-4-O-(methyl 2,3,4-tri-O-benzyl-β-D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranosyl uronate)- β -D-mannopyranoside uronate) (32): The title compound was synthesized from 21 (116 mg, 0.12 mmol) and 30 (100 mg, 0.082 mmol) as described by the general procedure for BSP-Tf₂O mediated glycosylations (69%): $[\alpha]_{\rm D} = -63 \ (c \ 1, \text{DCM}); \text{ IR (neat) } \nu \ (\text{cm}^{-1}) \ 735 \ 1057, \ 1747, \ 2097;$ ¹H NMR (500 MHz) δ 1.86 (m, 2H, CH₂CH₂CH₂), 3.37 (t, 1H, J = 7.0 Hz, CH_2N_3), 3.41 (s, 3H, CH_3 CO_2Me), 3.43 (s, 3H, CH_3 CO_2Me), 3.45 (s, 3H, CH_3 CO_2Me), 3.43–3.62 (m, 6H, 5 × H-3, O-CHHCH₂), 3.56 (s, 3H, CH₃ CO₂Me), 3.61 (s, 3H, CH₃ CO₂Me), 3.70-3.79 (m, 6H), 3.84-3.87 (m, 3H, $5 \times H-2$, $5 \times H-5$), 4.04(m, 1H, O-CHHCH₂), 4.18 (t, 1H, J = 9.0 Hz, H-4), 4.30 (m, 3H, $3 \times$ H-4), 4.44 (t, 1H, J = 8.5 Hz, H-4), 4.47 (s, 1H, H-1), 4.52-4.63 (m, 10H, 3 × H-1, 7 × CHHPh), 4.71-4.80 (m, 10H, H-1, 9 \times CHHPh), 4.83–4.86 (m, 6H, 6 \times CHHPh), 7.23–7.43 (m, 55H, H_{arom}); ¹³C NMR (150 MHz) δ 28.9 (CH₂ CH₂CH₂CH₂), 48.1 (CH₂N₃), 52.0 (3 × CH₃ CO₂Me), 52.1 (CH₃ CO₂Me), 52.3 (CH₃ CO₂Me), 66.7 (O-CH₂CH₂), 71.6 (CH₂ Bn), 72.3 (CH₂ Bn), 72.4 (CH₂ Bn), 72.5 (CH₂ Bn), 73.8 (CH₂ Bn), 74.4 (CH₂ Bn), 74.5 (CH₂ Bn), 75.1 (CH₂ Bn), 75.0 (CH₂ Bn), 74.2, 74.4, 75.0, 75.2, 75.9, 75.9, 76.0, (5 \times C-2 and 5 \times C-5), 75.6 (C-4), 77.2 (3 \times C), 79.2 (C-3), 79.7 (3 \times C-3), 81.4 (C-3), 101.7 ($J_{\rm C1-H1}$ = 1565 Hz, C-1), 102.3 ($J_{C1-H1} = 157$ Hz, C-1), 102.5 ($J_{C1-H1} =$ 155 Hz, 2 × 1), 102.7 (J_{C1-H1} = 154 Hz, C-1), 127.1, 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3 (CH_{arom}), 138.0 (C_q Bn), 138.2 (C_q Bn), 138.3 (C_q Bn), 138.6 (C_q Bn), 138.8 (C_q Bn), 138.9 (C_q Bn), 168.5 (C=O), 168.6 (C=O); HRMS $[M + 2NH_4^+]$ calcd for $C_{115}H_{131}O_{31}N_5$ 1039.4425, found 1039.4438

General Procedure for Deprotection of the Mannuronic Acid Oligomers: The fully protected mannuronic acid oligomers were dissolved in THF (0.025 M) and aqueous KOH (0.45 M, (n (+ 1) equiv, in which *n* is the number of ester groups). The biphasic mixture was homogenized by the addition of a little extra THF (<half the total volume). The mixture was stirred for 1 h, before being quenched by the addition of Amberlite-H⁺. The resin was filtered off and the solvent evaporated. The crude product was taken up in MeOH/HOAc (10/1, ~0.01 M for 25 and 28) or MeOH/ tBuOH/H₂O/HOAc (6/5/4/0.15, ~0.01 M, for 31 and 32) and Pd/C (catalytic amount) was added. The heterogeneous mixture was degassed, purged with H₂, and stirred (48 h) under a H₂ atmosphere, after which the Pd/C was filtered off and the mixture was concentrated. The product was purified by gel filtration (HW-40, 0.15 M Et₃NHOAc in H₂O) to provide the fully deprotected products (33: 59% over 2 steps; 34: 86% over 2 steps; 35: 65% over 2 steps; 36: 76% over 2 steps).

3-Aminopropyl (4-O-(β -D-mannopyranosyluronate)- β -D-mannopyranoside uronate)triethylammonium salt (33): The target

compound was synthesized from **26** (70 mg, 0.077 mmol) as described above and isolated as its monotriethyl ammonium salt (21 mg, 0.045 mmol, 59%): ¹H NMR (400 MHz) δ 1.26 (t, 9H, *J* = 7.6 Hz, CH₃, Et₃N), 1.97 (m, 2H, CH₂CH₂CH₂), 3.11 (m, 2H, CH₂NH₃), 3.28 (q, 6H, *J* = 7.6 Hz, CH₂, Et₃N), 3.64–3.76 (m, 5H), 3.81–3.97 (m, 4H), 4.03 (d, 1H, *J* = 2.8 Hz), 4.62 (s, 1H, H-1), 4.71 (s, 1H, H-1); ¹³C NMR (100 MHz) δ 8.2 (CH₃, Et₃N), 26.7 (CH₂ CH₂CH₂CH₂), 37.7 (CH₂NH₂), 46.7 (CH₂ Et₃N), 67.5 (O-CH₂-CH₂), 68.5, 69.8, 70.1, 70.8, 71.5, 72.6, 75.9, 76.0, 78.3, 99.9 (C-1), 100.1 (C-1), 175.5 (C=O), 175.8 (C=O); HRMS [M + H⁺] calcd for C₁₅H₂₆O₁₃N 428.1401, found 428.1397.

3-Aminopropyl (4-*O***-(***4***-***O***-(***β***-D-mannopyranosyluronate)-***β***-D-mannopyranosyluronate)-***β***-D-mannopyranosideuronate)triethylammonium salt (34): The target compound was synthesized from 29** (50 mg, 0.038 mmol) as described above and isolated as its monotriethyl ammonium salt (20 mg, 0.033 mmol, 86%): ¹H NMR (400 MHz) δ 1.26 (t, 18H, J = 7.6 Hz, CH₃, Et₃N), 1.90 (m, 2H, CH₂CH₂CH₂), 3.05 (m, 2H, CH₂NH₃), 3.11 (q, 12H, J = 7.6Hz, CH₂, Et₃N), 3.55–3.69 (m, 7H), 3.75–3.90 (m, 5H), 3.95 (br s, 2H), 4.54 (s, 1H, H-1), 4.58 (s, 1H, H-1), 4.65 (s, 1H, H-1); ¹³C NMR (100 MHz) δ 8.24 (CH₃ Et₃N), 26.7 (CH₂CH₂CH₂), 37.7 (CH₂NH₂), 46.7 (CH₂ Et₃N), 67.5 (O-CH₂-CH₂), 68.5, 69.8, 70.0, 70.4, 71.4, 72.6, 75.9, 76.0, 78.1, 78.2, 99.9 (C-1), 100.0 (C-1), 100.1 (C-1), 175.2 (C=O), 175.4 (C=O), 176.0 (C=O); HRMS [M + H⁺] calcd for C₂₁H₃₄O₁₉N 604.1725, found 604.1717.

3-Aminopropyl (4-*O***-(4-***O***-(β-D-mannopyranosyluronate)β-D-mannopyranosyluronate)-β-D-mannopyranosyluronate)-β-D-mannopyranosideuronate)triethylammonium salt (35): The target compound was synthesized from 32** (40 mg, 0.024 mmol) as described above to give the title compound (17 mg, 0.016 mmol): ¹H NMR (400 MHz) δ 1.26 (t, 27H, J = 7.6 Hz, CH₃, Et₃N), 1.90 (m, 2H, CH₂CH₂CH₂), 3.07 (m, 2H, CH₂NH₃), 3.10 (q, 18H, J =7.6 Hz, CH₂, Et₃N), 3.48–3.69 (m, 10H), 3.74–3.92 (m, 7H), 3.95 (brs, 3H), 4.55 (s, 1H, H-1), 4.57 (s, 1H, H-1), 4.58 (s, 1H, H-1), 4.65 (s, 1H, H-1); ¹³C NMR (100 MHz) δ 26.6 (CH₂CH₂CH₂), 37.7 (CH₂NH₂), 67.5 (O-CH₂-CH₂), 68.5, 69.8, 69.9, 70.4, 71.3, 71.4, 75.9, 77.8, 78.0, 78.2, 99.8 (C-1), 100.0 (2 × C-1), 100.1 (C-1), 175.2 (C=O), 175.3 (C=O); HRMS [M + H⁺] calcd for C₂₇H₄₂O₂₅N 780.2046, found 780.2044.

3-Aminopropyl (4-*O*-(4-*O*-(4-*O*-(β-D-mannopyranosyluronate)-β-D-mannopyranosyluronate)-β-D-mannopyranosyluronate)-β-D-mannopyranosyluronate)-β-D-mannopyranosyluronate)-β-D-mannopyranosyluronate)-β-D-mannopyranosideuronate)triethylammonium salt (36): The target compound was synthesized from 33 (54 mg, 0.026 mmol) as described above, and passed through a small Amberlite Na⁺ column to give the title compound (27 mg, 0.020 mmol): ¹H NMR (400 MHz) δ 1.26 (t, 6H, J = 7.6 Hz, CH₃, residual Et₃N), 1.91 (m, 2H, CH₂CH₂CH₂), 3.14 (m, 2H, CH₂NH₃), 3.18 (q, 4H, J = 7.6 Hz, CH₂, residual Et₃N), 3.56–4.02 (m, 22H), 4.62–4.72 (m, 5H, 5xH-1); ¹³C NMR (100 MHz) δ 26.6 (CH₂CH₂CH₂), 37.7 (CH₂NH₂), 67.5 (O-CH₂-CH₂), 68.5, 69.8, 69.9, 70.4, 71.3, 72.6, 75.9, 77.8, 78.0, 78.1, 99.8 (C-1), 99.9 (3 × C-1), 100.1 (C-1); HRMS [M + H⁺] calcd for C₃₃H₅₀O₃₁N 956.2361, found 956.2360.

Acknowledgment. We thank The Netherlands Organisation for Scientific Research (NWO) for Financial support (VENI fellowship to J.D.C.C.)

Supporting Information Available: Additional experimental details for the synthesis of **8**, **11**, **16**, and **17** and NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO8020192